

## RY-003-106032

Seat No.

## B. Sc. (Sem. VI) (CBCS) (W.I.F. 2016) Examination March - 2019

Physics: Paper - 602

(Statistical Mechanics and Solid State Physics)

Faculty Code: 003

Subject Code: 106032

- Time :  $2\frac{1}{2}$  Hours] [Total Marks : 70
- **Instructions**: (1) All questions are compulsory.
  - (2) Figures on right hand side indicate marks.
  - (3) Symbols have their usual meanings.
- 1 (A) Write a short answer to the following:
  - (1) "fermions" are identical and indistinguishable particles with \_\_\_\_\_\_ spin.
  - (2) In case of B-E statistics, only one particle can be accommodated in a given quantum state or a cell. Is it true or false?
  - (3) An interchange of phase points between two cells gives rise to a new microstate, but macrostate for that remains same. Do you agree with this?
  - (4) M-B statistics is applicable to particles which are identical and distinguishable. Is it true or false?
  - (B) Answer in brief for the following: (Any One)
    - (1) Using uncertainty principle show that the minimum volume of a cell in a phase space is  $h^3$ .
    - (2) In case of Sodium, Fermi level (kinetic energy) is  $18.2 \times 10^{-19}$  joule. Calculate velocity of electron

at the Fermi level. 
$$(m = 9.1 \times 10^{-31} kg)$$

2

|   | (C) | <ul> <li>Answer the following: (Any One)</li> <li>(1) State and prove the Sterling's approximation.</li> <li>(2) Give comparison between M-B, B-E and F-D statistics. (any three points)</li> </ul>                                                                                                                                                       | 3 |
|---|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|   | (D) | <ul> <li>Answer in detail: (Any One)</li> <li>(1) Discuss in detail: Distribution law for Maxwell-Boltzmann statistics.</li> <li>(2) Derive the distribution law for Fermi-Dirac statistics.</li> </ul>                                                                                                                                                   | 5 |
| 2 | (A) | <ul> <li>Write a short answer to the following:</li> <li>(1) Define "basis" in crystal structure.</li> <li>(2) In covalent bond, spins of two electrons are parallel. Do you agree?</li> <li>(3) What is specific heat? Define.</li> <li>(4) According to Debye, a solid is an isotropic elastic continuum. Is it true or false?</li> </ul>               | 4 |
|   | (B) | <ul> <li>Answer in brief for the following: (Any One)</li> <li>(1) Sketch the diagram showing cubic crystal having Miller indices (010).</li> <li>(2) In case of solids, if the Plank's constant is increased ten times then what effect will be on its specific heat C<sub>v</sub>?</li> </ul>                                                           | 2 |
|   | (C) | Answer the following: (Any One) (1) Explain Simple Cubic (SC) structure. (2) Write a note on Ionic crystal.                                                                                                                                                                                                                                               | 3 |
|   | (D) | <ul> <li>Write in detail : (Any One)</li> <li>(1) Describe in detail : Miller indices and procedure to determine them.</li> <li>(2) Discuss: The Einstein model for Specific heat of solids.</li> </ul>                                                                                                                                                   | 5 |
| 3 | (A) | <ul> <li>Write a short answer to the following:</li> <li>(1) Free electron gas in a metal can be considered as dense plasma. Is it true or false?</li> <li>(2) Define: density of states.</li> <li>(3) Write formula for work function (φ) of metal.</li> <li>(4) Fermi function f(E) = 0 for all values of E &lt; E<sub>F</sub> Do you agree?</li> </ul> | 4 |

2

RY-003-106032 ]

[ Contd....

- (B) Answer the following: (Any One)
  - (1) For free electron gas, using Fermi-Dirac distribution law show that f(E) = 1/2 for electron having energy  $E = E_E$
  - (2) Obtain the formula of wavelength associated with an electron having an energy equal to Fermi energy.
- (C) Answer the following: (Any One)

3

 $\mathbf{2}$ 

- (1) Derive formula for the density of states in one dimension.
- (2) Explain in brief: Thermal capacity of free electron system.
- (D) Write in detail: (Any One)

5

- (1) Discuss free electron gas in a one dimensional box and derive the equation for normalized wave function.
- (2) Discuss in detail: The Hall effect.
- 4 (A) Write a short answer to the following:

4

- (1) What is forbidden band?
- (2) In intrinsic semiconductors the Fermi level lies exactly half way between valance band and conduction band at 0 K. Do you agree?
- (3) In intrinsic semiconductors the width of forbidden gap is about  $0.01 \, eV$ . Is it true or false?
- (4) Give a name of any donor impurity.
- (B) Answer the following: (Any One)

 $\mathbf{2}$ 

- (1) Calculate the Fermi level  $(E_F)$  for an intrinsic semiconductor having band gap  $E_g = 0.7 \ eV$ . (Given :  $K_BT = 0.026 \ eV$ ,  $m_p$ \* =  $6m_e$ \* and In 6 = 1.8)
- (2) Find free electrons concentration  $(n_e)$  in N-region of Germanium p-n junction if its conductivity  $(\sigma_e)$  is 2000  $(\Omega m)^{-1}$  and mobility of electron  $(\mu_e)$  is  $0.4 m^2 (V s)^{-1}$

| RY-003-1     | 06032 | 2 ] 4 [ 750 / 16 -                                                                                     | 27] |
|--------------|-------|--------------------------------------------------------------------------------------------------------|-----|
|              | (2)   | Write a note : Applications of superconductivity.                                                      |     |
|              | (1)   | Explain: London's theory                                                                               |     |
| (D)          |       | te in detail : (Any <b>One</b> )                                                                       | 5   |
|              | (2)   | Discuss properties which do not change in superconducting transition.                                  |     |
|              | (1)   | -                                                                                                      |     |
| (0)          |       |                                                                                                        | อ   |
| (C)          | Ans   | wer the following: (Any One)                                                                           | 3   |
|              |       | 4.2  K temperature for a superconducting specimen, find critical field at critical temperature $14.5K$ |     |
|              | (2)   | If Initial magnetic field is $20.7 \times 10^5$ amp/m at                                               |     |
|              |       | temperature.                                                                                           |     |
|              |       | mass 200 a.m.u: is 4.153 K. If one of its isotope has 204 a.m.u. mass, find its transition             |     |
|              | (1)   |                                                                                                        |     |
| (B)          | Ans   | wer the following: (Any One)                                                                           | 2   |
|              |       | destroyed. Is it true or false?                                                                        |     |
|              |       | superconductors, its superconductivity will be                                                         |     |
|              | (4)   | If very high magnetic field is applied to the                                                          |     |
|              | (3)   | high. Do you agree ?                                                                                   |     |
|              | (3)   | For alloys, the transition temperature is extremely                                                    |     |
|              | (2)   | A superconductor exhibits a perfect ferromagnetism.  Is it true or false?                              |     |
|              | (0)   | temperature falls below K.                                                                             |     |
|              |       | drops suddenly to almost zero when the                                                                 |     |
|              | (1)   | Kammerlingh found that the resistance of mercury                                                       |     |
| <b>5</b> (A) | Wri   | te a short answer to the following:                                                                    | 4   |
|              | (2)   | Discuss in detail: Donor states                                                                        |     |
|              | (1)   | Describe electron-hole carrier concentration.                                                          |     |
| (D)          |       | te in detail : (Any One)                                                                               | 5   |
|              |       |                                                                                                        |     |
|              | (2)   |                                                                                                        |     |
| (0)          | (1)   | Explain effect of impurities in semiconductors.                                                        | •   |
| (C)          | Ans   | wer the following : (Any One)                                                                          | 3   |