RY-003-106032 Seat No. ## B. Sc. (Sem. VI) (CBCS) (W.I.F. 2016) Examination March - 2019 Physics: Paper - 602 (Statistical Mechanics and Solid State Physics) Faculty Code: 003 Subject Code: 106032 - Time : $2\frac{1}{2}$ Hours] [Total Marks : 70 - **Instructions**: (1) All questions are compulsory. - (2) Figures on right hand side indicate marks. - (3) Symbols have their usual meanings. - 1 (A) Write a short answer to the following: - (1) "fermions" are identical and indistinguishable particles with ______ spin. - (2) In case of B-E statistics, only one particle can be accommodated in a given quantum state or a cell. Is it true or false? - (3) An interchange of phase points between two cells gives rise to a new microstate, but macrostate for that remains same. Do you agree with this? - (4) M-B statistics is applicable to particles which are identical and distinguishable. Is it true or false? - (B) Answer in brief for the following: (Any One) - (1) Using uncertainty principle show that the minimum volume of a cell in a phase space is h^3 . - (2) In case of Sodium, Fermi level (kinetic energy) is 18.2×10^{-19} joule. Calculate velocity of electron at the Fermi level. $$(m = 9.1 \times 10^{-31} kg)$$ 2 | | (C) | Answer the following: (Any One) (1) State and prove the Sterling's approximation. (2) Give comparison between M-B, B-E and F-D statistics. (any three points) | 3 | |---|-----|---|---| | | (D) | Answer in detail: (Any One) (1) Discuss in detail: Distribution law for Maxwell-Boltzmann statistics. (2) Derive the distribution law for Fermi-Dirac statistics. | 5 | | 2 | (A) | Write a short answer to the following: (1) Define "basis" in crystal structure. (2) In covalent bond, spins of two electrons are parallel. Do you agree? (3) What is specific heat? Define. (4) According to Debye, a solid is an isotropic elastic continuum. Is it true or false? | 4 | | | (B) | Answer in brief for the following: (Any One) (1) Sketch the diagram showing cubic crystal having Miller indices (010). (2) In case of solids, if the Plank's constant is increased ten times then what effect will be on its specific heat C_v? | 2 | | | (C) | Answer the following: (Any One) (1) Explain Simple Cubic (SC) structure. (2) Write a note on Ionic crystal. | 3 | | | (D) | Write in detail : (Any One) (1) Describe in detail : Miller indices and procedure to determine them. (2) Discuss: The Einstein model for Specific heat of solids. | 5 | | 3 | (A) | Write a short answer to the following: (1) Free electron gas in a metal can be considered as dense plasma. Is it true or false? (2) Define: density of states. (3) Write formula for work function (φ) of metal. (4) Fermi function f(E) = 0 for all values of E < E_F Do you agree? | 4 | 2 RY-003-106032] [Contd.... - (B) Answer the following: (Any One) - (1) For free electron gas, using Fermi-Dirac distribution law show that f(E) = 1/2 for electron having energy $E = E_E$ - (2) Obtain the formula of wavelength associated with an electron having an energy equal to Fermi energy. - (C) Answer the following: (Any One) 3 $\mathbf{2}$ - (1) Derive formula for the density of states in one dimension. - (2) Explain in brief: Thermal capacity of free electron system. - (D) Write in detail: (Any One) 5 - (1) Discuss free electron gas in a one dimensional box and derive the equation for normalized wave function. - (2) Discuss in detail: The Hall effect. - 4 (A) Write a short answer to the following: 4 - (1) What is forbidden band? - (2) In intrinsic semiconductors the Fermi level lies exactly half way between valance band and conduction band at 0 K. Do you agree? - (3) In intrinsic semiconductors the width of forbidden gap is about $0.01 \, eV$. Is it true or false? - (4) Give a name of any donor impurity. - (B) Answer the following: (Any One) $\mathbf{2}$ - (1) Calculate the Fermi level (E_F) for an intrinsic semiconductor having band gap $E_g = 0.7 \ eV$. (Given : $K_BT = 0.026 \ eV$, m_p * = $6m_e$ * and In 6 = 1.8) - (2) Find free electrons concentration (n_e) in N-region of Germanium p-n junction if its conductivity (σ_e) is 2000 $(\Omega m)^{-1}$ and mobility of electron (μ_e) is $0.4 m^2 (V s)^{-1}$ | RY-003-1 | 06032 | 2] 4 [750 / 16 - | 27] | |--------------|-------|--|-----| | | (2) | Write a note : Applications of superconductivity. | | | | (1) | Explain: London's theory | | | (D) | | te in detail : (Any One) | 5 | | | (2) | Discuss properties which do not change in superconducting transition. | | | | (1) | - | | | (0) | | | อ | | (C) | Ans | wer the following: (Any One) | 3 | | | | 4.2 K temperature for a superconducting specimen, find critical field at critical temperature $14.5K$ | | | | (2) | If Initial magnetic field is 20.7×10^5 amp/m at | | | | | temperature. | | | | | mass 200 a.m.u: is 4.153 K. If one of its isotope has 204 a.m.u. mass, find its transition | | | | (1) | | | | (B) | Ans | wer the following: (Any One) | 2 | | | | destroyed. Is it true or false? | | | | | superconductors, its superconductivity will be | | | | (4) | If very high magnetic field is applied to the | | | | (3) | high. Do you agree ? | | | | (3) | For alloys, the transition temperature is extremely | | | | (2) | A superconductor exhibits a perfect ferromagnetism. Is it true or false? | | | | (0) | temperature falls below K. | | | | | drops suddenly to almost zero when the | | | | (1) | Kammerlingh found that the resistance of mercury | | | 5 (A) | Wri | te a short answer to the following: | 4 | | | (2) | Discuss in detail: Donor states | | | | (1) | Describe electron-hole carrier concentration. | | | (D) | | te in detail : (Any One) | 5 | | | | | | | | (2) | | | | (0) | (1) | Explain effect of impurities in semiconductors. | • | | (C) | Ans | wer the following : (Any One) | 3 |